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1. INTRODUCTION 
     Investigation of fluid flow through stenosed 

(constricted) geometry has become quite interesting for 

its significance in biomechanics from theoretical, 

experimental and clinical point of view. Generally the 

blood flow through arteries is unsteady and pulsatile due 
to the cyclic nature of heart pump. The Reynolds 

number of blood flow can vary from 1 to 4000 in 

different types of arteries [5]. Though blood flow is 

usually pulsatile laminar without any obstruction in the 

artery, it undergoes a phase of transitional-to-turbulent 

in presence of a constriction. On the other hand, flow 

pulsatility also plays an important role on transition to 

turbulence in arteries [5]. As a result, due to the 

presence of stenosis and flow pulsatility, turbulence can 

generate even at a Reynolds number as low as a few 

hundred [6]. 
     Numerous experimental studies have been performed 

for getting a better insight of the transition-to-turbulent 

flow through arterial stenosis. Most of the experimental 

studies of blood flow through stenosis model have 

focused on the poststenotic flow physics and the effects 

of blood vessel geometries and shear stresses on the 

inner arterial wall. Clark et al. [7, 8] performed steady 

and pulsatile flow experiments with a nozzle type 

laboratory model of arterial stenosis and demonstrated  

 

 

 

the different regions of flow produced by stenosis. 

Measurement of velocity energy spectra for a variety of 

stenosis shapes and flow conditions and effect of 

Reynolds number on the disturbance of velocity was 

also reported by him. Characteristics of the flow 

disorder over a transitional Reynolds number range as 
well as the relationship of steady to pulsatile flow 

through mild and moderate degrees of occlusion is 

studied by Cassanova and Giddens [9]. They conducted 

experiments through modeled stenosis for Reynolds 

number ranging from 318-2540 (based on the tube 

diameter and mean velocity) and a pulsatile frequency 

parameter of 15. Ahmed and Giddens [10, 11] also 

studied the velocity and flow disturbance measurements 

through axisymmetric stenosis of 25%, 50% and 75% 

area reduction at the moderate Reynolds number in the 

range from 500 to 2000 using Laser Doppler 
Anemometry. Their results indicate that the flow 

disturbances of discrete oscillation frequency are the 

most important indicator of early stage of stenosis 

development.  

     Beyond these leading experimental investigations 

mentioned above, the method of computational fluid 

dynamics (CFD) has been significantly developed to 

simulate this type of flow over the past decade. Several 

CFD studies have been reported on laminar-turbulent 

transition flow in idealized stenoses with different 

turbulent methodologies: Reynolds-averaged Navier-
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Stokes (RANS), direct numerical simulation (DNS) and 

large-eddy simulation (LES). From the point of view of 

computational modeling, DNS is extremely taxing on 

computing resources as all the spatial and temporal 

scales of turbulence are accurately solved. On the other 

hand, RANS turbulence models are primarily designed 

for simulating well-developed, high Reynolds number 

turbulent flows and are not suitable for arterial flows. 

Owing to the limitations of the RANS and DNS 
approaches mentioned above, the method of LES, where 

a filter is used to differentiate large (filtered) and small 

(subgrid) scales of motion, embodies a superior 

numerical tool for this type of research. The application 

of the technique of LES to the study of flow in a 

modeled arterial stenosis was presented by Mittal et al. 

[12]. Molla et al. [2, 13] also investigated with the same 

type of model stenosis for both additive and non-

additive pulsatile flow for a maximum Reynolds 

number 2000 using the dynamic model (DM) of Lilly 

[3] and reported the turbulent phenomena at the post-

stenotic region with the pulsation effects. It is observed 
from the literature survey that, most of the LES studies 

are based on the conventional dynamic subgrid-scale 

(SGS) stress model (DM) of Lilly [3] as well as 

Boussinesq eddy viscosity approximation. One of the 

important drawbacks of this model is linked to the 

overly simplistic constitutive relation adopted in the 

model. On one hand, if the model coefficient is 

restricted to be positive, it can lead to an unrealistic 

SGS dissipation effect. On the other hand, if the 

coefficient is allowed to be negative, numerical 

instability arises due to excessive backscatter of the 
SGS turbulent kinetic energy (TKE). Here we 

implemented the advanced dynamic nonlinear SGS 

modeling (DNM) of Wang and Bergstrom [4] which 

includes the conventional DM as its first-order 

approximation as well as two higher-order tensorial 

constituent components for nonlinear anisotropic 

representation of the SGS stress tensor. 

     In this paper, we numerically investigate pulsatile 

laminar-turbulent transitional flow in a 3D channel with 

a biological type stenosis formed axi-symmetrically on 

the top and bottom walls based on the advanced 
dynamic nonlinear SGS model. 

 

2. FORMULATION OF THE PROBLEM 
 

 
Fig 1. Schematic of an idealized stenosis model and the 

associated coordinate system 

 

     The geometry shown in Fig 1. consists of a 3D 

channel with a both sided cosine shaped stenosis on the 

upper and lower wall centred at x/h =0.0, where x is the 

horizontal distance or the distance along the flow and h 

is the height of the channel. In the figure, we use x, y 

and z to represent the streamwise, vertical and spanwise 

coordinates, respectively. The stenosis is centered 5h 

downstream of the channel inlet and 15h away from the 

channel outlet.  The stenosis is formed using the 
following geometrical relationship: 

𝑦

ℎ
= 1 − 𝛿𝑐  1 + cos

𝑥𝜋

ℎ
 , − 

ℎ

2
≤ 𝑥 ≤

ℎ

2
 

where 𝛿𝑐  is the parameter that relates to the area 

reduction of the stenosis. 𝛿𝑐  is fixed to 0.5 , which gives 

a 50% reduction of the cross-sectional area from top and 

bottom wall at the centre of the stenosis.  

 

2.1 Governing Equations 
     The blood flow in a large vessel can be modeled 

accurately as a Newtonian fluid and it allows us to use 
the Navier-Stokes equations of motion for investigating 

post-stenotic flow through arterial stenosis. The 

equations of motion for variables that have been 

spatially filtered on the scale of their spatial resolution 

is given by,  
𝜕𝑢 𝑖

𝜕𝑥𝑖
 = 0                                  (1)                                                                   

  𝜕𝑢 𝑖

𝜕𝑡
+  

𝜕

𝜕𝑥𝑗
(𝑢 𝑖𝑢 𝑗 )    =   −

1

𝜌
 
𝜕𝑃 

𝜕𝑥𝑖
+  𝜐

𝜕2𝑢 𝑖

𝜕𝑥𝑗 𝜕𝑥𝑗
−

𝜕𝜏𝑖𝑗

𝜕𝑥𝑗
  (2)   

 

2.2 Dynamic Nonlinear SGS Stress Model 
(DNM)                                                
     The DNM of Wang and Bergstrom [4] is used to 

evaluate the SGS stress tensor 𝜏𝑖𝑗  appearing in the 

filtered momentum Eq. (2). The constitutive relation for 
the DNM is based on the explicit nonlinear quadratic 

tensorial polynomial constitutive relation.  

𝜏𝑖𝑗
∗ =  −𝐶𝑆𝛽𝑖𝑗 − 𝐶𝑊𝛾𝑖𝑗 − 𝐶𝑁𝜂𝑖𝑗            (3) 

where an asterisk represents a trace-free tensor, i.e. 

(∙)𝑖𝑗
∗ ≜ (∙)𝑖𝑗 − (∙)𝑘𝑘 𝛿𝑖𝑗 3  , and the base tensors are 

defined as 𝛽𝑖𝑗  ≜  2∆ 2 𝑆  𝑆 𝑖𝑗  , 𝛾𝑖𝑗  ≜  4∆ 2(S 𝑖𝑗 Ω 𝑖𝑗 +

 𝑆 𝑗𝑘 Ω 𝑘𝑖 ) and 𝜂𝑖𝑗  ≜  4∆ 2(𝑆 𝑖𝑘 S 𝑘𝑗 − 𝑆 𝑚𝑛 𝑆 𝑛𝑚 𝛿𝑖𝑗 3 ). 

Here, Δ  ≜  (△ 𝑥 △ 𝑦 △ 𝑧)1 3   is the grid-level filter 

width; 𝛿𝑖𝑗  is the Kronecker delta; 𝑆 𝑖𝑗 ≜ 
1

2
( 

𝜕𝑢 𝑖

𝜕𝑥𝑗
+

𝜕𝑢 𝑗

𝜕𝑥𝑖
 ) 

and Ω 𝑖𝑗 ≜ 
1

2
( 

𝜕𝑢 𝑖

𝜕𝑥𝑗
−

𝜕𝑢 𝑗

𝜕𝑥𝑖
 ) are the resolved strain and 

rotation rate tensors, respectively; and  𝑆  =
(2𝑆 𝑖𝑗 . 𝑆 𝑖𝑗 )1 2 . According to Wang and Bergstrom [4], 

the values of the three model coefficients CS, CW and CN 

can be determined by minimizing the residual of the 
Germano identity following the dynamic procedure of 

Lilly [3] as 

 

𝑀𝑖𝑗𝑀𝑖𝑗 𝑀𝑖𝑗𝑊𝑖𝑗 𝑀𝑖𝑗𝑁𝑖𝑗

𝑊𝑖𝑗 𝑀𝑖𝑗 𝑊𝑖𝑗 𝑊𝑖𝑗 𝑊𝑖𝑗 𝑁𝑖𝑗

𝑁𝑖𝑗 𝑀𝑖𝑗 𝑁𝑖𝑗 𝑊𝑖𝑗 𝑁𝑖𝑗𝑁𝑖𝑗

 .  
𝐶𝑆

𝐶𝑊

𝐶𝑁

 =  −  

𝐿𝑖𝑗
∗ 𝑀𝑖𝑗

𝐿𝑖𝑗
∗ 𝑊𝑖𝑗

𝐿𝑖𝑗
∗ 𝑁𝑖𝑗

  (4) 

where 𝐿𝑖𝑗 ≜ 𝑢 𝑖𝑢 𝑗  
 − 𝑢 𝑖

 𝑢𝑗   is the resolved Leonard type 

stress; 𝑀𝑖𝑗 ≜ 𝛼𝑖𝑗 − 𝛽 𝑖𝑗  , 𝑊𝑖𝑗 ≜ 𝜆𝑖𝑗 − 𝛾 𝑖𝑗  and 𝑁𝑖𝑗 ≜

 𝜁𝑖𝑗 − 𝛾 𝑖𝑗  are differential tensors respectively; and 

𝛼𝑖𝑗 ≜  2Δ  2 𝑆   𝑆  𝑖𝑗 , 𝜆𝑖𝑗 ≜ 4Δ  2(𝑆  𝑖𝑘Ω 
 

𝑘𝑗  + 𝑆  𝑗𝑘 Ω  𝑘𝑖 ) and 
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𝜁𝑖𝑗 ≜ 4Δ  2(𝑆  𝑖𝑘 S  𝑘𝑗  +  𝑆  𝑚𝑛 S  𝑛𝑚  𝛿𝑖𝑗 3 ) are base tensors at 

the test-grid level.  

 
2.2 Boundary Conditions 
     The physiological pulsatile laminar velocity profile, 

which is used to generate the time dependent pulsatile 

flows at the inlet of the channel, is obtained through an 

analytical solution to the Navier-Stokes equation in the 

context of a fully-developed laminar channel flow. The 

solution is as follows: 

𝑢  𝑦, 𝑡 = 4𝑈  
1

4
− 

𝑦2

ℎ2
 +  𝐴 

ℎ2

𝑖𝑛𝜇𝛼2

𝑁

𝑛=1

 

                   1 − 
cosh   𝑖𝑛𝛼

𝑦

ℎ
 

cosh   𝑖𝑛𝛼
1

2
 
 𝑒𝑖 𝑛𝜔𝑡 +𝜙𝑛                  (5) 

      

 
Fig 2. Temporal variation of inlet velocity profile, 𝑢 𝑈   

near the wall 

 
Fig 2. shows the temporal variation of the inlet velocity 

profile derived from the Eq. (5) for Re = 2000. The 

pulsatile laminar velocity profile is used to generate the 

time-dependent pulsatile flows at the inlet of the 

channel. No-slip and impermeable boundary conditions 

are applied to all solid surfaces. The zero-gradient 

boundary condition is employed at the outlet of the 

channel, and periodical boundary conditions are applied 

in the spanwise direction. 

 

3. NUMERICAL PROCEDURE 
     A finite volume method is used to discretise the 

governing filtered equations to yield a system of linear 

algebraic equations. To discretise the diffusion term, a 

second-order accurate central difference scheme is used. 

For the convective term, an energy conserving 

discretisation scheme is used. The transient term is 

discretised using a three point backward difference 

scheme with a constant time step Δt=1.5×10−3 seconds. 

A pressure correction algorithm is applied to the 

coupled pressure with the velocity components stored at 

the centre of a control volume in accordance with the 

collocated grid arrangement. At each time step, the 
pressure field was updated by solving a Poisson type 

pressure correction equation using an ICCG [14] 

method. The checkerboard effect in the pressure field 

arising from the pressure-velocity decoupling on a 

collocated grid system was removed using a nonlinear 

momentum interpolation scheme. A BI-CGSTAB [15] 

solver is used for solving the matrix of velocity vectors. 

Overall the code is second-order accurate in both time 

and space. 

 

 

4. RESULTS ANALYSIS 
     Two Reynolds number (i.e. 1000 and 2000) are 

considered for the present study with a grid sensitivity 

test for three different grid systems, 50 150 40 (Case 

1), 70 180 40 (Case 2) and 50 210 40 (Case 3) 

control volumes (in the stream, vertical and spanwise 

directions, respectively). In order to resolve the wall 

shear stress in the near wall region, the grid is refined 

significantly in the spanwise direction. Fig 3 and Fig 4 
depict the results for three cases are compared in terms 

of non-deimensionalized time-averaged streamwise 

velocity (< 𝑢 > 𝑈  ) and resolved TKE (𝑘 𝑈 2 ) 

respectively, at different location along the streamwise 

direction. It is obvious from Fig 3 that these above  

 
Fig 3. Grid sensitivity test with respect to the mean 

streamwise velocity, < 𝑢 > 𝑈  , at (a) x/h = -5, (b) x/h = 

0, (c) x/h = 1, (d) x/h = 2, (e) x/h = 3, (f) x/h = 4, (g) x/h 

= 5, (h) x/h = 6, (i) x/h = 8, (j) x/h = 10, (k) x/h = 12, (l) 

x/h = 15. Based on three grid systems, Case 1: solid line 

for 50 × 150 × 40 control volumes, Case 2: dashed line 

for 70 × 180 × 40 control volumes, Case 3: solid line 

with symbol for 50 × 210 × 40 control volumes. 

 
Fig 4. Grid sensitivity test with respect to the TKE, 

𝑘 𝑈 2 , at (a) x/h = -5, (b) x/h = 0, (c) x/h = 1, (d) x/h = 2, 

(e) x/h = 3, (f) x/h = 4, (g) x/h = 5, (h) x/h = 6, (i) x/h = 
8, (j) x/h = 10, (k) x/h = 12, (l) x/h = 15. Based on three 

grid systems, Case 1: solid line for 50 × 150 ×
40 control volumes, Case 2: dashed line for 70 × 180 ×
40 control volumes, Case 3: solid line with symbol for 

50 × 210 × 40 control volumes. 

 

mentioned cases are sufficient to resolve the mean 

velocity fields, though Fig. 6 shows a slight variation of 

non-dimensionalized TKE at the immediate post-

stenotic region 1< x/h <6. The 70 180 40 grid 

arrangement (Case 2) is selected for presenting the 

results in the remainder part of the paper. 

 
Fig 5. Time mean streamlines appended on the 

streamwise mean velocity, < 𝑢 > 𝑈   for Re = 2000. 
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Fig 5. illustrates the time-averaged streamlines at the 

central plane (z/h=0.5) for Re=2000. Two recirculation 

regions, one in the lower wall and another in the upper 

wall are observed near the post lip of the stenosis due to 

the separation of the shear layer from the nose of the 

stenosis. The recirculation region in the upper wall is 

larger than that in the lower wall. These recirculation 

regions are responsible for critical medical conditions. 

At Re = 2000, the location of separation of the 
recirculation zones is x/h|s = 0.107, and the location of 

reattachment is x/h|r = 2.15, respectively. 

 

 
Fig 5. Time and spanwise averaged DNM coefficients, 

<CS>, <CW> and <CN> at y/h = 0.5 for Re = 2000. 

 

Fig 5. shows the streamwise distribution of time and 

spanwise averaged DNM coefficients. From the figure, 

we can see that all the three DNM coefficients 

approaches to zero in the regions x/h<1.8 and x/h>8.3. It 
implies that the flow pattern is laminar due to the 

dominant viscous forces in those regions. In the core 

region of turbulence, the mean value is positive for 

<CS> and <CW> but negative for <CN>. Moreover, the 

DNM coefficients reach their maximum values in the 

region 2.5<x/h<3.3.  

 

 

 

 
Fig 6. Sensitivity of the time and spanwise averaged 

DNM coefficients to grid resolution for Re = 2000 at y/h 

= 0.5. 

 

Fig 6. compares the model coefficients calculated for Re 
= 2000 using the three different grid arrangements. The 

values obtained using the three grid arrangements are 

slightly different to account for the grid effects. From 

these three figures we may conclude that the magnitude 

of <CW> is one order higher than the <CS> with same 

sign, but the order of <CN> is same with the opposite 

sign. 

  

 
Fig 7. Non-dimensionalized time-averaged wall shear 

stress,< 𝜏𝑤 > 𝜌𝑈 2 , at (a) upper wall and (b) lower 

wall. 

 

Time-averaged wall shear stress, < 𝜏𝑤 > 𝜌𝑈 2  at both 

the upper and lower walls for Re =1000 and 2000 are 
presented in Fig. 7(a) and 7(b). Both at the upper and 

lower walls there is an acute shear stress rise just prior 

to the centre of the stenosis. This occurs due to the acute 

pressure drop across the stenosis. It is also observed that 

the magnitude of the maximum wall stress increases 

with the Reynolds number.  
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Fig 8. Slice view of instantaneous streamwise velocity, 

< 𝑢 > 𝑈   for Re = 2000 at t/T = 10.25. 

 

The slice view of the isopleths of the instantaneous 

stremwise velocity, < 𝑢 > 𝑈   , is shown in Fig. 8 at t/T 

= 10.25 for Re = 2000. The first two slices show that 

prior to the stenosis, the flow is laminar and stratified. 

The third slice shows that the velocity reaches 

maximum (due to continuity) at the throat of the 

stenosis. The large velocity in the fourth and fifth slices 

(indicated by reddish color) reflects the immediate post-

stenotic region. The following slices represent that the 

flow is becoming re-laminarized gradually in the 

downstream region. 
 

 

 
Fig 9. Non-dimensionalized shear stress (a) resolved 

turbulent shear stress, −< 𝑢"𝑣" > 𝑈 2  and (b) SGS 

shear stress, −< 𝜏12 > 𝑈 2  

 

Fig. 9 displays the streamwise distribution of the non-

dimensionalized resolved Reynolds turbulent shear 

stress, −< 𝑢"𝑣" > 𝑈 2 and the SGS shear stress, 

−< 𝜏12 > 𝑈 2  for the two different Reynolds number 
tested. Both the Reynolds turbulent shear stress and 

SGS shear stress for Re = 2000 undergo a sharp drop 

within the recirculation region 0< x/h <3, due to the 

presence of the adverse pressure gradient, whereas for 

Re = 1000, both the shear stresses are almost zero. 

 
5. CONCLUSIONS 
     The technique of LES with the dynamic non-linear 

model has been applied to simulate a Newtonian, 

incompressible and physiological pulsatile flow in a 

constricted channel to investigate the transition-to-

turbulent flow due to the arterial stenosis. In general, the 

flow pattern is laminar in the upstream of the stenosis 

which is indicated by the very low values of the 

resolved Reynolds stress, SGS shear stress as well as the 

three model coefficients of DNM. The far downstream 

region shows the similar trend due to the re-
laminarization followed by an increasing trend of the 

above mentioned quantities at the throat and immediate 

post-stenotic region.  

     Blood flow does not always behave as a Newtonian 

fluid in arteries. For this reason, any LES study of non-

Newtonian blood flow through a stenosis based on the 

conventional dynamic SGS stress model of Lilly [27] 

may not be suitable. The constitutive relationship of the 

DM is based on the overly simplified linear Boussinesq 

assumption (Smagorinsky), and correspondingly, the 

SGS viscosity of the DM is a linear function of the 

resolved strain rate tensor. However, the molecular 
viscosity of a non-Newtonian blood fluid is typically a 

nonlinear function of the strain rate tensor. In future 

studies, the application of the DNM to LES of non-

Newtonian blood flows can be considered, as this may 

successfully resolve the current conceptual 

inconsistency in modelling the molecular and SGS 

viscosities for LES based on the conventional DM. 
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7. NOMENCLATURE 
 

Symbol Meaning 

Re Reynolds number 

Height of the channel 

Bulk velocity 

Pressure 

Fluid density 

Kinematic viscosity 

Amplitude of the pulsatile oscillation 

Number of harmonics 

Womersely number  

Coordinates of the Cartesian frame 
Time 

SGS stress model coefficients 

h 

𝑈  
P 

ρ 

ν 

A 

n 

α 
x,y,z 

t 

CS,CW, 

CN 
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